27 November 2008
22 November 2008
tulang punggung
Tiga bagian di atasnya terdiri dari 24 tulang yang dibagi menjadi 7 tulang cervical (leher), 12 tulang thorax (thoraks atau dada) dan, 5 tulang lumbal. Banyaknya tulang belakang dapat saja terjadi ketidaknormalan. Bagian terjarang terjadi ketidaknormalan adalah bagian leher.
Struktur umum
Sebuah tulang punggung terdiri atas dua bagian yakni bagian anterior yang terdiri dari badan tulang atau corpus vertebrae, dan bagian posterior yang terdiri dari arcus vertebrae. Arcus vertebrae dibentuk oleh dua "kaki" atau pediculus dan dua lamina, serta didukung oleh penonjolan atau procesus yakni procesus articularis, procesus transversus, dan procesus spinosus. Procesus tersebut membentuk lubang yang disebut foramen vertebrale. Ketika tulang punggung disusun, foramen ini akan membentuk saluran sebagai tempat sumsum tulang belakang atau medulla spinalis. Di antara dua tulang punggung dapat ditemui celah yang disebut foramen intervertebrale.
Tulang punggung cervical
Secara umum memiliki bentuk tulang yang kecil dengan spina atau procesus spinosus (bagian seperti sayap pada belakang tulang) yang pendek, kecuali tulang ke-2 dan 7 yang procesus spinosusnya pendek. Diberi nomor sesuai dengan urutannya dari C1-C7 (C dari cervical), namun beberapa memiliki sebutan khusus seperti C1 atau atlas, C2 atau aksis.
Setiap mamalia memiliki 7 tulang punggung leher, seberapapun panjang lehernya.
Tulang punggung thorax
Procesus spinosusnya akan berhubungan dengan tulang rusuk. Beberapa gerakan memutar dapat terjadi. Bagian ini dikenal juga sebagai 'tulang punggung dorsal' dalam konteks manusia. Bagian ini diberi nomor T1 hingga T12.
Tulang punggung lumbal
Bagian ini (L1-L5) merupakan bagian paling tegap konstruksinya dan menanggung beban terberat dari yang lainnya. Bagian ini memungkinkan gerakan fleksi dan ekstensi tubuh, dan beberapa gerakan rotasi dengan derajat yang kecil.
Tulang punggung sacral
Terdapat 5 tulang di bagian ini (S1-S5). Tulang-tulang bergabung dan tidak memiliki celah atau diskus intervertebralis satu sama lainnya.
Tulang punggung coccygeal
Terdapat 3 hingga 5 tulang (Co1-Co5) yang saling bergabung dan tanpa celah. Beberapa hewan memiliki tulang coccyx atau tulang ekor yang banyak, maka dari itu disebut tulang punggung kaudal (kaudal berarti ekor).
tulang
21 November 2008
Bayi Tabung
Bayi tabung adalah bayi hasil konsepsinya (yi dari pertemuan antara sel telur dan sperma) yang dilakukan dalam sebuah tabung yang dipersiapkan sedemikian rupa di laboratorium.
Didalam laboratorium tabung tsb dibuat sedemikian rupa sehingga menyerupai dengan tempat pembuahannya yang asli yaitu rahim ibu atau wanita...ya nggak..?
Dibuat sedemikian rupa sehingga temperatur dan situasinya persis sama dengan aslinya.
Prosenya mula-mula dengan suatu alat khusus semacam alat untuk laparoskopi dilakukan pengambilan sel telur dari wanita yang baru saja mengalami ovulasi.
Kemudian sel telur yang diambil tadi dibuahi dengan sperma yang sudah dipersiapkan dalam tabung yang suasananya dibuat persis seperti dalam rahim.
Setelah pembuahan hasil konsepsi tsb dipelihara beberapa saat dalam tabung tadi sampai pada suatu saat tertentu akan dicangkokan ke dalam rahim wanita tsb.
Selanjutnya diharapkan embrio itu akan tumbuh sebagaimana layaknya di dalam rahim wanita..
Sudah tentu wanita tsb akan mengalami kehamilan ,perkembangan selama kehamilan seperti biasa.
BIOTEKNOLOGI
Bioteknologi secara sederhana sudah dikenal oleh manusia sejak ribuan tahun yang lalu. Sebagai contoh, di bidang teknologi pangan adalah pembuatan bir, roti, maupun keju yang sudah dikenal sejak abad ke-19, pemuliaan tanaman untuk menghasilkan varietas-varietas baru di bidang pertanian, serta pemuliaan dan reproduksi hewan. Di bidang medis, penerapan bioteknologi di masa lalu dibuktikan antara lain dengan penemuan vaksin, antibiotik, dan insulin walaupun masih dalam jumlah yang terbatas akibat proses fermentasi yang tidak sempurna. Perubahan signifikan terjadi setelah penemuan bioreaktor oleh Louis Pasteur. Dengan alat ini, produksi antibiotik maupun vaksin dapat dilakukan secara massal.
Pada masa ini, bioteknologi berkembang sangat pesat, terutama di negara negara maju. Kemajuan ini ditandai dengan ditemukannya berbagai macam teknologi semisal rekayasa genetika, kultur jaringan, rekombinan DNA, pengembangbiakan sel induk, kloning, dan lain-lain. Teknologi ini memungkinkan kita untuk memperoleh penyembuhan penyakit-penyakit genetik maupun kronis yang belum dapat disembuhkan, seperti kanker ataupun AIDS. Penelitian di bidang pengembangan sel induk juga memungkinkan para penderita stroke ataupun penyakit lain yang mengakibatkan kehilangan atau kerusakan pada jaringan tubuh dapat sembuh seperti sediakala. Di bidang pangan, dengan menggunakan teknologi rekayasa genetika, kultur jaringan dan rekombinan DNA, dapat dihasilkan tanaman dengan sifat dan produk unggul karena mengandung zat gizi yang lebih jika dibandingkan tanaman biasa, serta juga lebih tahan terhadap hama maupun tekanan lingkungan. Penerapan bioteknologi di masa ini juga dapat dijumpai pada pelestarian lingkungan hidup dari polusi. Sebagai contoh, pada penguraian minyak bumi yang tertumpah ke laut oleh bakteri, dan penguraian zat-zat yang bersifat toksik (racun) di sungai atau laut dengan menggunakan bakteri jenis baru.
Kemajuan di bidang bioteknologi tak lepas dari berbagai kontroversi yang melingkupi perkembangan teknologinya. Sebagai contoh, teknologi kloning dan rekayasa genetika terhadap tanaman pangan mendapat kecaman dari bermacam-macam golongan.
16 November 2008
puisi
13 Oktober 2008
usaha (kerja) dan energi
W = F S = F S cos q
q = sudut antara F dan arah gerak
Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg
Dimensi usaha energi: 1W] = [El = ML2T-2
Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).
Energi dan usaha merupakan besaran skalar.
Beberapa jenis energi di antaranya adalah:
ENERGI KINETIK (Ek)Ek trans = 1/2 m v2Ek rot = 1/2 I w2 m = massa v = kecepatan I = momen inersia w = kecepatan sudut
ENERGI POTENSIAL (Ep)Ep = m g hh = tinggi benda terhadap tanah
ENERGI MEKANIK (EM)EM = Ek + EpNilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.
Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut.
Ek + Ep = EM = tetap
Ek1 + Ep1 = Ek2 + Ep2
PRINSIP USAHA-ENERGIJika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut
W tot = Delta Ek Sigma F.S = Ek akhir - Ek awal
W tot = jumlah aljabar dari usaha oleh masing-masing gaya = W1 + W2 + W3 + .......
Delta Ek = perubahan energi kinetik = Ek akhir - Ek awal
ENERGI POTENSIAL PEGAS (Ep)
Ep = 1/2 k D x2 = 1/2 Fp Dx
Fp = - k Dx
Dx = regangan pegask = konstanta pegas Fp = gaya pegas
Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.
Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.
Contoh:
1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?
Jawab:
Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:
F. S = Ek akhir - Ek awal
F . 0.05 = 0 - 1/2 . 2(20)2
F = - 400 / 0.05 = -8000 N
(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).
2. Benda 3 kg bergerak dengan kecepatan awal 10 m/s pada sebuah bidang datar kasar. Gaya sebesar 20Ö5 N bekerja pada benda itu searah dengan geraknya dan membentuk sudut dengan bidang datar (tg a = 0.5), sehingga benda mendapat tambahan energi 150 joule selama menempuh jarak 4m.Hitunglah koefisien gesek bidang datar tersebut ?
Jawab:
Uraikan gaya yang bekerja pada benda:
Fx = F cos a = 20Ö5 = 40 N
Fy = F sin a = 20Ö5 . 1Ö5 = 20 N
S Fy = 0 (benda tidak bergerak pada arah y)
Fy + N = w => N = 30 - 20 = 10 N
Gunakan prinsip Usaha-Energi
S Fx . S = Ek
(40 - f) 4 = 150 ® f = 2.5 N
3. Sebuah pegas agar bertambah panjang sebesar 0.25 m membutuhkan gaya sebesar 18 Newton. Tentukan konstanta pegas dan energi potensial pegas !
Jawab:
Dari rumus gaya pegas kita dapat menghitung konstanta pegas:
Fp = - k Dx ® k = Fp /Dx = 18/0.25 = 72 N/m
Energi potensial pegas:
Ep = 1/2 k (D x)2 = 1/2 . 72 (0.25)2 = 2.25 Joule